Problem1067--「一本通 3.1 练习 1」新的开始

1067: 「一本通 3.1 练习 1」新的开始

Time Limit: 1 Sec  Memory Limit: 512 MB
Submit: 0  Solved: 0
Submit Status Web Board

Creator:

Description

发展采矿业当然首先得有矿井,小 FF 花了上次探险获得的千分之一的财富请人在岛上挖了 nnn 口矿井,但他似乎忘记考虑的矿井供电问题……

为了保证电力的供应,小 FF 想到了两种办法:

  1. 在这一口矿井上建立一个发电站,费用为 vvv(发电站的输出功率可以供给任意多个矿井)。
  2. 将这口矿井与另外的已经有电力供应的矿井之间建立电网,费用为 ppp

小 FF 希望身为「NewBe_One」计划首席工程师的你帮他想出一个保证所有矿井电力供应的最小花费。


Input

第一行一个整数 nnn,表示矿井总数。

2∼n+12\sim n+12n+1 行,每行一个整数,第 iii 个数 viv_ivi 表示在第 iii 口矿井上建立发电站的费用。

接下来为一个 n×nn\times nn×n 的矩阵 ppp,其中 pi,jp_{i,j}pi,j 表示在第 iii 口矿井和第 jjj 口矿井之间建立电网的费用(数据保证有pi,j=pj,ip_{i,j}=p_{j,i}pi,j=pj,i,且 pi,i=0p_{i,i}=0pi,i=0)。


Output

输出仅一个整数,表示让所有矿井获得充足电能的最小花费。


Sample Input

4  
5  
4 
4  
3  
0 2 2 2  
2 0 3 3  
2 3 0 4  
2 3 4 0

Sample Output

9

HINT

对于 30%30\%30% 的数据:1≤n≤501\le n\le501n50
对于 100%100\%100% 的数据:1≤n≤300,0≤vi,pi,j≤1051\le n\le 300,0\le v_i, p_{i,j}\le 10^51n300,0vi,pi,j105


Source/Category


Submit Status